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– GRAPE machines
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– Comparison with other architecture
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• Next-Generation GRAPE

– Future of accelerators



Short history of GRAPE

• Basic concept

• GRAPE-1 through 6

• Software Perspective



Basic concept (As of 1988)

• With N -body simulation, almost all calculation goes to the
calculation of particle-particle interaction.

• This is true even for schemes like Barnes-Hut treecode or
FMM.

• A simple hardware which calculates the particle-particle
interaction can accelerate overall calculation.

• Original Idea: Chikada (1988)

Host
Computer

GRAPE

Time integration etc. Interaction calculation

Accelerator-based computing two decades ago



Chikada’s idea (1988)

• Hardwired pipeline for force calculation (similar to Delft
DMDP)

• Hybrid Architecture (things other than force calculation
done elsewhere)



GRAPE-1 to GRAPE-6

GRAPE-1: 1989, 308Mflops

GRAPE-4: 1995, 1.08Tflops

GRAPE-6: 2002, 64Tflops



Performance history

Since 1995

(GRAPE-4),

GRAPE has been

faster than

general-purpose

computers.

Development cost

was around 1/100.



Software development for GRAPE

GRAPE software library provides several basic

functions to use GRAPE hardware.

• Sends particles to GRAPE board memory

• Sends positions to calculate the force and start

calculation

• get the calculated force (asynchronous)

User application programs use these functions.

Algorithm modifications (on program) are necessary

to reduce communication and increase the degree of

parallelism



Analogy to BLAS

Level BLAS Calc:Comm Gravity

0 c=c-a*s 1:1 fij = f(xi, xj) 1:1

1 AXPY N : N fi = Σjf(xi, xj) N : N

2 GEMV N2 : N2 fi = Σjf(xi, xj) N2 : N

for multiple i

3 GEMM N3 : N2 fk,i = Σjf(xk,i, xk,j) N2 : N

“Multiwalk”

• Calc ÀComm essential for accelerator

• Level-3 (matrix-matrix) essential for BLAS

• Level-2 like (vector-vector) enough for gravity

• Treecode and/or short-range force might need

Level-3 like API.



Porting issues

• Libraries for GRAPE-4 and 6 (for example) are

not compatible

• Even so, porting was not so hard. The calls to

GRAPE libraries are limited to a fairly small

number of places in an entire application code.

• Backporting the GRAPE-oriented code to

CPU-only code is easy, and allows very efficient

use of SIMD features.

• In principle the same for GPGPU.



Real-World issues with “Porting”

— Mostly on GPGPU....

• Getting something run on GPU is not difficult

• Getting a good performance number compared

with non-optimized, single-core x86 performance

is not so hard.



Quotes
From: Twelve Ways to Fool the Masses When Giving
Performance Results on ============================================Accelerators Parallel Computers
(D. H. Bailey, 1991)

1. Quote only 32-bit performance results, not 64-bit results.
2. Present performance figures for an inner kernel, and then
represent these figures as the performance of the entire
application.
6. Compare your results against scalar, unoptimized code on
======================Xeons Crays.
7. When direct run time comparisons are required, compare
with an old code on an obsolete system.
8. If MFLOPS rates must be quoted, base the operation count
on the parallel implementation, not on the best sequential
implementation.
12. If all else fails, show pretty pictures and animated videos,
and don’t talk about performance.

History repeats itself — Karl Marx



Real-World issues with “Porting”
continued

• Making it faster than 10-year-old GRAPE or

highly-optimized code on x86 (using SSE/SSE2)

is VERY, VERY HARD (you need Keigo...)

• These are *mostly* software issues

• Some of the most serious ones are limitations in

the architecture (lack of good reduction operation

over processors etc)

I’ll return to this issue later.



“Problem” with GRAPE approach

• Chip development cost becomes too high.

Year Machine Chip initial cost process

1992 GRAPE-4 200K$ 1µm

1997 GRAPE-6 1M$ 250nm

2004 GRAPE-DR 4M$ 90nm

2010? GDR2? > 10M$ 45nm?

Initial cost should be 1/4 or less of the total budget.

How we can continue?



Next-Generation GRAPE
— GRAPE-DR

• Planned peak speed: peak 2 Pflops SP/1Pflops

DP

• New architecture — wider application range than

previous GRAPEs

• primarily to get funded

• No force pipeline. SIMD programmable processor

• Completion year: FY 2008-2009



Processor architecture
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Chip architecture
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• 32 PEs organized to
“broadcast block” (BB)

• BB has shared memory.
Various reduction
operation can be applied
to the output from BBs
using reduction tree.

• Input data is broadcasted
to all BBs.

• “Solved” data movement
problem: Very small
number of long wires and
off-chip IO.



Computation Model

Parallel evaluation of

Ri =
∑
j

f(xi, yj)

• parallel over both i and j (Level-2 gravity)

• yj may be omitted (trivial parallelism)

• Si,j =
∑
k

f(xi,k, yk,j) also possible (Level-3 BLAS)



The Chip

Sample chip delivered May 2006

90nm TSMC, Worst case 65W@500MHz



PE Layout

Black: Local Memory

Red: Reg. File

Orange: FMUL

Green: FADD

Blue: IALU

0.7mm by 0.7mm

800K transistors

0.13W@500MHz

1Gflops/512Mflops

peak (SP/DP)



Chip layout

• 16 blocks with

32PEs each

• Shared memory

within blocks

• 18mm by 18mm

chip size



Processor board

PCIe x16 (Gen 1) interface

Altera Arria GX as DRAM

controller/communication

interface

• Around 200W power

consumption

• Not quite running at

500MHz yet...

(FPGA design not

optimized yet)

• 900Gflops DP peak

(450MHz clock)

• Available from K&F

Computing Research



GRAPE-DR cluster system



GRAPE-DR cluster system

• 128-node, 128-card system (105TF theoretical

peak @ 400MHz)

• Linpack measured: 24 Tflops@400MHz (still lots

of tunings necessary....)

• Gravity code: 340Gflops/chip, working

• Host computer: Intel Core i7+X58 chipset, 12GB

memory

• network: x4 DDR Infiniband

• plan to expand to 384-node system RSN. (Cables

and switches...)



Software Environment

• Kernel libraries

– DGEMM

∗ BLAS, LAPACK

– Particle-Particle interaction

• Assembly Language

• HLL, OpenMP-like interface

Idea based on PGDL (Hamada, Nakasato)

— pipeline generator for FPGA



Machine code

108-bit horizontal microcode

DUM l m m m t t t t r r r r r r r r r r r l l l l l l f f f f f f f f f f f f f f f f f f f i i f b b b b

DUM l _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ m m m m m m m m m m m m a a a a a a a a a s m m m m

DUM : i o i w l s i w i w w w r r r r r r w i a a t w u u u u u u u u u u u u d d d d d d d l l e _ _ _ _

DUM : m m f r m h s r s a a w a a w a a w r s d d r l l l l l l l l l l l l l d d d d d d d u u l w a p w

DUM : r r s i a o e i e d d l d d l d d l i e r r e : _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ : r d e l

DUM : : : e t d r l t l r r : r r a r r b t l : i g : s s r n s s r n r n i i n n s r n i i i u : i r a :

DUM : : : l e r t : e : : i : a i : b i : e : : : a : h h o o h h o o o o s s o o i o o s s a n : t : d :

DUM : : : : : : s : : : : : : : a : : b : : : : : d : i i u r i i u r u r e e r r g u r e e l s : e : r :

DUM : : : : : : t : : : : : : : : : : : : : : : : r : f f n m f f n m n m l l m m n n m l l u i : : : : :

DUM : : : : : : o : : : : : : : : : : : : : : : : : : t t d a t t d a d a a b a a b d a a b o g : : : : :

DUM : : : : : : p : : : : : : : : : : : : : : : : : : 2 5 a l 2 5 b l : l : : l l : : l : : p n : : : : :

DUM : : : : : : : : : : : : : : : : : : : : : : : : : 5 0 : a 5 0 : b : o : : a b : : o : : : e : : : : :

DUM : : : : : : : : : : : : : : : : : : : : : : : : : a a : : b b : : : : : : : : : : : : : : d : : : : :

ISP 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 2 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 A 0 0 0 0 0 1

ISP 1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 2 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1

ISP 1 0 0 0 0 0 0 0 1 1 2 0 1 0 0 0 0 0 0 0 2 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 3 A 0 0 0 0 0 1

ISP 1 0 0 0 0 0 0 0 1 1 4 1 1 0 1 1 2 1 1 0 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1

ISP 1 0 0 0 0 0 0 0 0 0 0 0 1 4 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 A 0 0 1 0 0 1

DUM

DUM IDP header format: IDP len addr bbn bbnmask, all in hex

DUM RRN format

DUM ADDR N BBADR REDUC WL FSEL NA NB SB RND NO OP UN ODP SREGEN

IDP 1 1000 0 0

RRN 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1

IDP 1 1000 0 0

RRN 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1



HLL example

Nakasato (2008), based on LLVM.

VARI xi, yi, zi;
VARJ xj, yj, zj, mj;
VARF fx, fy, fz;
dx=xi-xj;
dy=yi-yj;
dz=zi-zj;
r2= dx*dx+dy*dy+dz*dz;
rinv = rsqrt(r2);
mr3inv = rinv*rinv*rinv*mj;
fx+= mr3inv*dx;
fy+= mr3inv*dy;
fz+= mr3inv*dz;



Driver functions

Generated from the description in the previous slide

int SING_send_j_particle(struct grape_j_particle_struct *jp,
int index_in_EM);

int SING_send_i_particle(struct grape_i_particle_struct *ip,
int n);

int SING_get_result(struct grape_result_struct *rp);
void SING_grape_init();
int SING_grape_run(int n);



Interface struct

struct grape_j_particle_struct{
double xj;
double yj;
double zj;
double mj;

};
struct grape_i_particle_struct{

double xi;
double yi;
double zi;

};
struct grape_result_struct{

double fx;
double fy;
double fz;

};



DGEMM kernel in assembly
language (part of)

## even loop
bm b10 $lr0v
bm b11 $lr8v
dmul0 $lr0 $lm0v ; bm $lr32v c0 0 ; rrn fadd c0 256 flt72to64
dmul1 $lr0 $lm0v ; upassa $fb $t $t ; idp 0
dmul0 $lr0 $lm256v ; faddAB $fb $ti $lr48v ; bm $lr40v c1 0
dmul1 $lr0 $lm256v ; upassa $fb $t $t
dmul0 $lr2 $lm8v ; faddAB $fb $ti $lr56v ; bm $lr32v c2 1
dmul1 $lr2 $lm8v ; faddA $fb $lr48v $t
.....
dmul0 $lr14 $lm504v ; faddA $fb $ti $lr32v ; bm $lr40v c63 31
dmul1 $lr14 $lm504v ; faddA $fb $lr56v $t
faddA $fb $ti $lr40v
nop

“VLIW”-style



Unique feature as parallel language

• Only the inner kernel is specified

• Communication and data distribution are taken

care by hardware and library. User-written

software does not need to care about.



OpenMP-like compiler

Goose compiler (Kawai 2009)

#pragma goose parallel for icnt(i) jcnt(j) res (a[i][0..2])

for (i = 0; i < ni; i++) {

for (j = 0; j < nj; j++) {

double r2 = eps2[i];

for (k = 0; k < 3; k++) dx[k] = x[j][k] - x[i][k];

for (k = 0; k < 3; k++) r2 += dx[k]*dx[k];

rinv = rsqrt(r2);

mf = m[j]*rinv*rinv*rinv;

for (k = 0; k < 3; k++) a[i][k] += mf * dx[k];

}

}

Translated to assembly language and API calls.



Performance and Tuning example

• HPL (LU-decomposition)

• Gravity

Based on the work by H. Koike (Thesis work)



LU-decomposition

DGEMM performance
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FASTEST single-chip and single-card performance on

the planet! (HD5870/5970 will be faster...)



DGEMM tuning

Key to high performance: Overlapping

communication and Calculation

• PE kernel calculates C(8,2)= A(32,8) * B(8,2)

• 512 PEs calculate C(256,2)= A(512,256)* B(512,2)

• Next B sent to chip while calculation

• Previous C sent to host while calculation

• Next A sent from host to GDR card while calculation

Everything other than the transfer of B from host

to GDR card is hidden.



LU-decomposition performance

N

G
flo

ps

Speed in Gflops as

function of Matrix size

430 Gflops (54% of

theoretical peak) for

N=50K



LU-decomposition tuning

• Almost everything mentioned in Kathy Yelick’s talk

– except for the concurrent use of CPU and GDR (we use
GDR for column factorization as well...)

– right-looking form

– TRSM converted to GEMM

– use row-major order for fast O(N2) operations

• Several other “new” techniques

– Transpose matrix during recursive column
decomposition

– Use recursive scheme for TRSM (calculation of L−1)

3 weeks to develop the code from scratch



HPL (parallel LU) tuning

• Everything done for single-node LU-decomposition

• Both column- and row-wise communication hidden

• TRSM further modified: calculate UT −1 instead of T −1U

• More or less working, tuning still necessary

Two months for coding and debugging so far.

N=30K, single node: 240Gflops
N=60K, 4 nodes: 984 Gflops
(Super-linear because of partial hiding of panel factorization)



Gravity kernel performance

(Performance of individual timestep code not much

different)
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Assembly code (which I wrote) is not very optimized

yet... Should reach at least 600 Gflops after rewrite.



Comparison with GPGPU
Pros:

• Significantly better silicon usage
512PEs with 90nm
40% of the peak DP speed of HD5870 with 1/2 clock and
1/5 transistors

• Designed for scientific applications
reduction, small communication overhead, etc

Cons:

• Higher cost per silicon area...
(small production quantity)

• Longer product cycle... 5 years vs 1 year

Good implementations of N -body code on GPGPU are there
(Hamada, Nitadori, ...)



GPGPU performance for N -body
simulation

• Impressive for a trivial N2 code with shared

timestep (x100 performance!!!) — actually x10

compared to a good SSE code.

• ∼ x5 for production-level algorithms (tree or

individual timestep), ∼ x3 or less for the same

price, even when you buy GTX295 cards and not

Tesla and after Keigo developed new algorithms

(without him x2 or less).



GPGPU tuning difficulties

• huge overhead for DMA and starting threads

(much longer than MPI communication latency

with IB)

• lack of low-latency communication between

threads

GRAPE and GRAPE-DR solution

• PIO for sending data from host to GDR

• single PIO write stars calculation

• hardware support for broadcast and reduction

Near-peak performance with minimal bandwidth

for both on-board memory and host.



Next-Generation GRAPE

Question:

Any reason to continue hardware development?

• GPUs are fast, and getting faster

• FPGAs are also growing in size and speed

• Custom ASICs practically impossible to make



Next-Generation GRAPE

Question:

Any reason to continue hardware development?

• GPUs are fast, and getting faster

• FPGAs are also growing in size and speed

• Custom ASICs practically impossible to make

Answer?

• GPU speed improvement might slow down

• FPGAs are becoming far too expensive

• Power consumption might become most critical

• Somewhat cheaper way to make custom chips



GPU speed improvement slowing
down?

Clear “slowing down”

after 2006 (after G80)

Reason: shift to more
general-purpose
architecture

Discrete GPU market is
eaten up by unified
chipsets and unified
CPU+GPU

But: HPC market is not
large enough to support
complex chip development



Structured ASIC

• Something between FPGA and ASIC

• From FPGA side: By using one or few masks for

wiring, reduce the die size and power

consumption by a factor of 3-4.

• eASIC: 90nm (Fujitsu) and 45nm (Chartered)

products.

• 45nm: up to 20M gates, 700MHz clock. 1/10 in

size and 1/2 in the clock speed compared to

ASIC. (1/3 in per-chip price)

• 1/100 initial cost



GRAPEs with eASIC

• Completed an experimental design of a

programmable processor for quadruple-precision

arithmetic. 6PEs in nominal 2.5Mgates.

• Started designing low-accuracy GRAPE hardware

with 7.4Mgates chip.

Summary of planned specs:

• around 8-bit relative precision

• support for quadrupole moment in hardware

• 100-200 pipelines, 300MHz, 2-4Tflops/chip

• small power consumption: single PCIe card can

house 4 chips (10 Tflops, 50W in total)



Will this be competitive?

Rule of thumb for a special-purpose computer

project:

Price-performance should be more than 100 times

better at the beginning of the project

— x 10 for 5 year development time

— x 10 for 5 year lifetime

Compared to CPU: Okay

Compared to GPU: ???



Will this be competitive?

Rule of thumb for a special-purpose computer

project:

Price-performance should be more than 100 times

better at the beginning of the project

— x 10 for 5 year development time

— x 10 for 5 year lifetime

Compared to CPU: Okay

Compared to GPU: ???

Will GPUs 10 years from now 100 times faster than

today?



Summary

• GRAPE-DR, with programmable processors, will have
wider application range than traditional GRAPEs.

• Small cluster of GDR system is now up and running

• Peak speed of a card with 4 chips is 800 Gflops (DP).

• DGEMM performance 640 Gflops,
LU decomposition > 400Gflops

• Currently, 128-card, 512-chip system is up and running

• We might return to custom design with structured ASIC



Further reading...

http://www.scidacreview.org/0902/html/hardware.html


